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Abstract 

 
We present a GOMS-MHP style 
model-based approach to the problem 
of predicting human habit capture 
errors. Habit captures occur when the 
model fails to allocate limited 
cognitive resources to retrieve task-
relevant information from memory.  
Lacking the unretrieved information, 
decision mechanisms act in accordance 
with implicit default assumptions, 
resulting in error when relied upon 
assumptions prove incorrect. The 
model helps interface designers 
identify situations in which such 
failures are especially likely.   

 
Introduction 

 
Advances in our understanding of human 
cognition have not informed the design of 
complex human-machine systems to the 
extent possible. This results in part 
because the complexity of these systems 

poses a formidable challenge, and in part 
because the knowledge is not in form that 
can readily be applied in a design setting.  
Much of our knowledge of human 
capabilities and limitations comes from 
laboratory experiments using simple tasks 
and tight controls over extraneous 
variables.  These controls are necessary to 
isolate mental operations of interest.  
However, it is hard to generalize the 
results to complex applied environments in 
which operators must plan the execution of 
multiple concurrent tasks in the face of 
considerable uncertainty. Under these 
conditions, no single mental operation 
determines behavior.  Rather, it is 
necessary to understand how the diverse 
set of internal resources is managed to 
accomplish tasks.   Even when certain 
known facts about human performance 
could be usefully applied in design, 
human-system designers would have 
difficulty locating those facts and 
understanding how they might apply to 
their specific problem.  Such facts are 



often buried in bulky sets of guidelines, 
whose rules themselves are often difficult 
to match to specific problems. Or, they are 
contained in scientific journals not easily 
comprehended by non-specialists.  
Handbooks can be useful, but still require 
the designer to know what information is 
needed and how to match the design 
requirements to the available data. 

The introduction of GOMS 
modeling in conjunction with the Model 
Human Processor [Card84], made 
available a promising new methodology 
for dealing with complexity at a systems 
level. The Model Human Processor 
(MHP) provided researchers with a 
cognitive architecture whose resources and 
parameters constrained behavior while 
GOMS provided a formal method for 
procedure execution that enabled the 
representation of rules and procedures for 
selecting action in complex task domains 
[John94; Gray93].  

Despite the success and widespread 
use of GOMS modeling, it has proven 
difficult to account for human error, or to 
handle the executive control needed to 
manage multiple tasks.  These are 
significant shortcomings when modeling 
domains such as air traffic control where 
the coordination of multiple tasks is central 
and the concern with human error 
paramount. If we are to develop 
representations of human behavior that aid 
the designers of procedures and displays 
for air traffic control, we must deal directly 
with the source of human error in a 
dynamic, multitasking environment. 

We have constructed a human operator 
model called APEX that is intended to 

help identify situations in which the design 
of equipment and procedures might 
inadvertently contribute to operator error 
[Freed97]. In keeping with the GOMS-
MHP approach, APEX combines 
mechanisms for proceduralized task 
execution with a cognitive architecture that 
specifies resources. Our choice for a task 
execution model was driven by the 
demand for flexible scheduling of multiple 
tasks [Freed98a]. We replaced the GOMS 
component with a similar but more 
powerful procedure execution mechanism 
based on RAPs [Firby89]. Originally 
designed to enable robots to interleave and 
coordinate multiple tasks in dynamic, 
uncertain task environments, the RAP 
approach provides several important 
capabilities including: 
 
?? continuous coordination of concurrent 

activities 
?? diverse mechanisms for handling task 

interruption, task switching, and 
resumption 

?? mechanisms needed to cope with 
uncertainty inherent in complex, 
dynamic environments 

?? monitoring for and recovering from 
task failure 

 
Our implementation of these 

capabilities is embedded within a human 
resource architecture that enforces human 
limitations on behavior [Freed98b]. 
Components of the architecture, each 
representing a perceptual, cognitive, or 
motor resource, are associated with 
limitations and parameters. For example, 
the vision component has a locus-of-



attention parameter. Execution can set this 
value to a single location in the current 
visual field.  Because the visual 
component restricts access to visual 
information outside the selected location, 
agent performance depends on the 
effectiveness with which the locus-of-
attention resource is allocated. 

Using the execution module and 
resource architecture to simulate human 
behavior requires specifying domain-
specific rules and procedures.  
Performance will depend on how those 
procedures use limited resources to carry 
out a task.  Thus, the process of specifying 
procedures should be informed by an 
understanding of the strategies people use 
to manage limited resources. For example, 
people sometimes rely on written lists 
rather than faulty memory when shopping 
for groceries, or scan the market shelves 
for needed items, replacing a difficult 
memory task (recall) with an easier one 
(recognition).  Such strategies become 
incorporated into people's routine 
procedures for carrying out a task, 
enabling them to circumvent limits that 
would otherwise affect performance 
[Salthouse91]. Modeling the effects of 
resource limitations on performance thus 
requires representing the procedural end-
product of adaptation to routine tasks. 
While these adaptations are generally 
useful, they create the opportunity for 
error.   We will discuss the role of such 
adaptations in producing a form of error 
called a habit capture and present a human 
operator model that incorporates this 
analysis to predict error in realistically 
complex environments. 

 
Habit Capture Errors 

 
Human error is an important concern in 
safety-critical work environments such as 
air traffic control.  A survey of air traffic 
control related errors revealed that a high 
percentage of controller errors involve 
failures to carry out some intent, or failure 
to apply updated knowledge of the world 
in selecting an action. Errors involving 
failures to execute deferred intentions are 
examples of a class of memory phenomena 
referred to as prospective memory.  
Failures of prospective memory are 
common in daily life and include such 
errors as failing to take medication at 
prescribed times.  Typical of prospective 
memory failures, operators often 
recognized their error shortly afterward. 
This suggests that at least some cases of 
prospective memory failures result not 
from a failure to successfully retrieve 
information, but a failure to make a 
retrieval attempt. 

Our model ascribes such failures to 
initiate retrieval to the misallocation of 
limited resources during action selection. 
We illustrate the model using a class of 
prospective memory errors that we term 
habit captures.  The signature of a habit 
capture error is the execution of a habitual 
action in place of an intended but non-
routine action [Reason82].   A common 
example of such an error might be the 
failure to stop at the market on the way 
home. The intent is formed before leaving 
work, but cannot be carried out until the 
car reaches a specific turn-off. When this 
occurs, instead of exiting the highway at 



the intended exit, the driver proceeds on 
the normal, habitual route.   

Accounting for habit captures that 
result from failure to initiate a memory 
retrieval requires an understanding of 
when retrievals occur.  By retrieval, we 
refer to memory access that requires the 
allocation of a limited capacity resource 
that model can only retrieve one item of 
information at a time [Carrier95]. The 
model assumes that no capacity-limited 
memory access is required for routine 
behaviors, which are encoded directly in 
procedures.  For non-routine behaviors, 
the model must decide whether or not to 
allocate limited resources to retrieve the 
required information.  It is this difference 
in the resource demands of routine and 
non-routine information that underlies the 
generation of habit capture errors.   
 
Anomaly-driven retrieval 
 
In making decisions about how to allocate 
resources, the model is guided by 
observed anomalies and internal goals.  
Anomaly-driven memory retrievals are 
initiated to explain unusual or ambiguous 
aspects of the current task environment.  
For example observing a basket of laundry 
in the middle of one’s living room might 
trigger an attempt to locate an explanation 
in memory.  People can take advantage of 
this aspect of human memory processing 
to provide timely reminders that help 
manage tasks.  Thus, a person might 
intentionally place laundry in a 
conspicuous, atypical location as a 
reminder to do the wash.  Similarly, people 
make use of unintended or incidental 

perceptual structure in the task 
environment to cue retrievals.   For 
instance, if one were interrupted while 
bringing laundry to a washing machine, 
setting the laundry basket down might later 
serve to remind one to resume the task. 
 
To simulate these anomaly-driven memory 
retrievals, our model assumes that people 
acquire expectations about the perceptual 
structure of their task environment and that 
they monitor these expectations in the 
normal course of carrying out a task.   We 
further assume that when the environment 
regularly provides timely perceptual 
indicators that a memory retrieval is 
warranted, human decision-making 
processes adapt to take advantage of them.  
Such adaptations have been demonstrated 
in a variety of task domains; in some 
cases, people seem to use goal-driven 
retrieval in the early stage of learning a 
task, but gradually come to rely on 
perceptual indicators to initiate retrieval  
(see e.g. [Vera96]).  

Learning to use environmental cues 
can be seen as an adaptive response to 
opportunity-costs associated with memory 
retrieval.  Since only one memory retrieval 
attempt can be processed at a time, use of 
retrieval mechanisms for one task blocks 
or delays their use for all other tasks.  
Though they provide an efficient way to 
manage a limited resource, adaptations 
that rely on perceptual cues entail their 
own cost.  In particular, when the usual 
cues are absent, reliance upon them may 
result in failure.  For example, if someone 
removes a basket of laundry from the 
living room, its value in reminding a 



person of their cleaning task will be 
undermined.  More generally, habit 
capture errors are especially likely when 
perceptual indicators normally present in 
the task environment are absent, and thus 
cannot trigger needed memory recall 
actions.  

It is helpful in analyzing such 
failures to contrast nominal behavior, in 
which a timely memory retrieval results in 
correct behavior, from error behavior in 
which no retrieval is initiated.  In the latter 
case, a person behaves as if the 
unretrieved memory item had never been 
encoded.  Decision-making processes can 
be described as operating under an implicit 
default assumption that some typical 
condition, opposite that implied by the 
memory item, holds in the current 
situation.  In the example in which an 
intentionally placed laundry basket was 
removed and a failure to do laundry 
results, we could thus say that decision 
mechanisms implicitly assume that no 
intention to do laundry exists.   The idea of 
a default assumption is useful in specifying 
what behavior is likely to follow when a 
relevant memory item is not retrieved.  It 
also serves a useful practical purpose in 
explaining simulated behavior, allowing 
the simulation trace to make explicit 
reference to a critical non-event  — i.e. the 
non-occurrence of a retrieval attempt. 
 
Goal-driven retrieval 
 
Goal-driven retrievals are initiated to 
acquire information for some active task.  
For example, one might query memory to 
determine where the car is parked when 

deciding where to exit a large office 
building. In our model [Freed98a], routine 
goal-driven behavior results from the 
execution of procedures, each represented 
as a set of primitive and non-primitive 
steps. Executing a primitive initiates 
activity in model resources, specifying 
simple actions such a gaze shift, utterance, 
or memory retrieval attempt.   

Non-primitives specify a subgoal 
that, in many cases, can be accomplished 
by any of several alternative methods, 
each represented as a separate procedure.  
Executing a non-primitive requires 
selecting a method and then recursively 
executing each of its steps.  Procedures 
often include information acquisition 
steps that satisfy information prerequisites 
for subsequent steps of the same 
procedure.  For example, a procedure for 
getting home from work might include 
steps to acquire the location of one’s car 
and then go to the specified location. 

In many cases, information 
acquisition can be achieved by any of 
several alternative methods.  Decision 
mechanisms can also forego explicit 
information acquisition, especially in 
highly routine tasks where the outcome of 
the acquisition process would tend to be 
some predictable value; instead, behavior 
conforms to the default assumption that 
this predictable value holds in the current 
situation.  Thus, the exit path from one’s 
office building can be selected by 
retrieving the car’s current location from 
memory, visually scanning for the car out a 
window, or asking a companion.  
Alternately, one can simply leave by the 
usual exit without ever explicitly 



considering the car’s location.  The 
implementation of our model treats 
reliance on a default explicitly — i.e. as 
another method for acquiring task-relevant 
information.  To reflect its psychological 
status as an implicit rather than explicit 
event, the method of relying on a default 
takes no time and requires no limited 
resources.    

In our model, which information 
acquisition method (including reliance on a 
default) is used in a particular instance 
depends on several factors.  For this 
discussion, we will focus on one such 
factor.  In particular, after learning of some 
unusual situation, we assume that a person 
will be less likely to rely on a default (that 
the usual situation holds) for some time 
thereafter.  For instance, if a person parks 
his/her car somewhere other than the usual 
location, decision mechanisms that usually 
rely on the default location will have an 
increased likelihood of retrieving location 
from memory when exiting the building.  
We further assume that this likelihood 
decreases to the usual level over time, 
although time here is just a proxy for 
interference and other cognitive 
phenomena not currently represented in 
the model. 

The likelihood of a habit capture 
error will thus depend partly on the 
amount of time since an unusual condition 
was observed and partly on the rate at 
which increased likelihood of retrieval 
declines.  Our model handles the process 
of determining whether decision-
mechanisms rely on a default or retrieve 
from memory in a simplified way.  
Whenever an intention or unusual 

condition is encoded (or retrieved), the 
model generates bias, causing any attempt 
to acquire information about that condition 
to avoid reliance on the default.  
Representations of bias are associated 
with a fixed expiration interval; when 
this interval has passed, the decision 
mechanisms revert to the usual method of 
determining an information acquisition 
method for the specified condition. 

Like Anderson [1990], we assume 
that adaptive processes largely determine 
memory behavior, allowing experienced 
practitioners of a task to approximate 
optimal expiration interval values.  An 
optimal interval weighs the risk of habit 
capture against the opportunity cost and 
time cost of retrieving a memory value that 
merely confirms the default.  The ability of 
memory to approximate near-optimal 
intervals depends on experientially-derived 
knowledge of factors such as the expected 
duration D of a non-default condition, 
expected interval I between successive 
observations of a non-default (bias is 
refreshed each time the condition is 
observed), and expected risk of reducing 
performance at another task by blocking 
retrieval (opportunity cost).  We 
approximate optimum expiration interval 
EI = min(D,I).  
  Since bias can be maintained by 
retrieving the non-default condition from 
memory, anomaly-driven mechanisms that 
use retrieval to explain non-default 
conditions can be used to support goal-
driven retrieval.  For instance, placing a 
written reminder that one’s car is parked at 
an unusual location in a conspicuous place, 
and observing the reminder during the day, 



increases the likelihood that decision 
mechanisms will explicitly consider the 
car’s location when determining where to 
exit the building.  Such strategies will tend 
to fail (and result in habit capture errors) 
in the same conditions that the purely 
anomaly-driven strategies will fail — i.e. 
when needed perceptual support is absent.  
We illustrate how our model simulates 
such an error in a hypothetical air traffic 
control scenario.  Greater detail about the 
implementation of the model is given in 
[Freed98b]. 
 
Example air traffic control scenario 
 
At a Terminal Radar Control center, one 
controller will often be assigned to the task 
of guiding planes through a region of 
airspace called an "approach sector" 
[Stein93]. This task involves contacting 
planes at various sector entry points and 
getting them lined up at a safe distance 
from one another on landing approach to a 
particular airport. Some airports have two 
parallel runways. In such cases, the 
controller will form planes up into two 
lines.  Occasionally, a controller will be 
told that one of the two runways is closed 
and that all planes on approach to land 
must be directed to the remaining open 
runway. A controller's ability to direct 
planes exclusively to the open runway 
depends on remembering that the other 
runway is closed. How does the controller 
remember this important fact? Normally, 
the diversion of all inbound planes to the 
open runway produces an easily perceived 
reminder. In particular, the controller will 
detect only a single line of planes on 

approach to the airport, even though two 
lines (one to each runway) would normally 
be expected. 

However, problems can arise in 
conditions of low workload. With few 
planes around, there is no visually distinct 
line of planes to either runway. Thus, the 
usual situation in which both runways are 
available is perceptually indistinguishable 
from the case of a single closed runway. 
The lack of perceptual support would then 
force the controller to rely on memory-
driven retrieval and thus increase the 
chance of error. 
 
 

Simulation and Implementation 
 
In our air traffic controller simulation 
model, the arrival of a plane at a certain 
position in airspace (as observed on the 
radar display) causes the simulated 
controller to begin the task of selecting a 
destination runway for the target plane. 
We assume that for highly routine 
decisions such as runway selection, human 
controllers can be expected to know which 
factors to consider in making the decision 
and how to appropriately weight each 
factor.  This knowledge is incorporated 
into the following decision procedure:  
 

Procedure27: select runway for ?plane 
1) determine which runway has  fewer 

planes on approach => ?factor1 
2) det. which approach would be faster 

=> ?factor2 
3) det. which approach easier for me 

=> ?factor3 



4) det. which runway safest for  ?plane 
=> ?factor4 

5) det. left runway open?  => ?factor5 
6) det. right runway open? => ?factor6 
7)    compute-decision 

(factor1,factor2,..) 
 

Generally, a decision procedure 
consists of n steps.  The first (n-1) 
prescribe information acquisition tasks to 
evaluate potentially decision-relevant 
factors.  The nth step runs a simple rule 
that selects from a fixed set of decision 
alternatives (left-runway or right-runway 
in this case) based on factor values.   

Factor evaluation steps can typically 
be accomplished by any of several 
methods.  In this example, the controller 
could determine the status of the left 
runway by retrieving information from 
memory, asking another controller, or by 
assuming the most likely condition – i.e. 
that the runway is open.  Since runway 
closures are rare and memory retrieval is 
expensive, we assume that a typical 
controller will rely on the default unless 
transient bias promotes a more effortful 
alternative. 

In the described scenario, the simulated 
controller hears that the left runway is 
closed. Interpretation mechanisms cause a 
propositional representation of this fact to 
be encoded in memory.  The encoding 
event generates bias according to the 
following rule: 
 

   IF  (closed ?runway)  is encoded in 
memory 
   THEN bias procedure-27, step5. 
(expire in 10 min) 

 
Consequently, procedure execution 

mechanisms will be biased against relying 
on the default value when carrying out 
step5 of procedure27 for the next ten 
minutes — i.e. the availability of the left 
runway will be verified rather than 
assumed when selecting a runway for an 
approaching plane.   

Eventually, the initial bias expires.  
To select a runway for a newly arrived 
plane, the controller will once again 
consider only the default assumption.  
Other factors then determine which 
runway is selected.  For example, the 
controller may choose to direct a heavy 
plane to the longer left runway which, in 
normal circumstances, would allow the 
plane an easier and safer landing.  With 
the left runway closed, actions following 
from this decision result in error. 

Avoiding error requires maintaining 
appropriate bias.  In a variation of the 
described scenario in which no error 
occurs, visually perceived reminders of the 
runway closure cause bias to be 
periodically renewed. In particular, 
whenever visual attention mechanisms 
attend to plane icons on an approach path 
to the airport, interpretation mechanisms 
note the absence of a line of planes to the 
left runway and signal an expectation 
failure on the basis of the following rule: 
 
 
    IF    I am visually attending to left 
approach path, and  
           visual group of plane icons not 
detected     



    THEN  signal-anomaly: (absent plane-
group left) 
 

In general, whenever an expectation 
failure occurs, a task to explain the 
observed anomaly is initiated.  The first 
step in such a task is to try to match the 
anomaly to a known explanation-pattern 
(XP) [Schank86].  A match results in a 
task to verify the explanatory hypothesis 
provided by the XP. 
 
Explanation-pattern 
  Anomaly:  (absent plane-group ?left-or-
right) 

  Candidate Explanation: (closed runway 
?runway) 

  To verify: retrieve from memory (closed 
runway ?runway) 

 
In principle, verifying a hypothesis 

could involve mental and physical actions 
of any kind.  In this case, the contents of 
working memory are sufficient to prove or 
disprove the explanation; the anomalous 
absence of planes on approach to the left 
runway is explained as a result of the left 
runway's closure.   

Bias renewal occurs whenever the 
working memory item that originally 
produced the bias is reencoded or 
retrieved.  Thus, retrieving (closed runway 
left) triggers the bias generation rule just 
as if the proposition had been encoded for 
the first time.  Thus, the unusual 
arrangement of planes on the radar scope 
acts as a constant reminder, preventing the 
controller from reverting to the use of its 
default assumption and thereby preventing 
error. 

 
Aiding user interface design  
 
By helping to simulate such scenarios, the 
model can direct an interface designer's 
attention to potential design-facilitated 
errors that might otherwise be overlooked.  
Moreover, the model's ability to make 
explicit how such errors might occur can 
help indicate the best way to refine an 
interface.  For example, one of the 
difficulties in designing a radar display is 
balancing the need to present a large 
volume of information against the need to 
keep the display uncluttered.  In this case, 
by showing how the error results from low 
traffic conditions, the simulation indicates 
a clever fix for the problem: use an icon to 
explicitly represent runway closures, but 
only display the icon in low plane-load 
conditions when it is most needed and 
produces the least clutter 
 

Conclusion 
 
We have presented a GOMS-MHP style 
approach to the problem of predicting 
human habit capture errors in the domain 
of air traffic control.  Our model assumes 
that people manage limited memory 
retrieval resources by taking advantage of 
perceptual indicators that a retrieval is 
warranted, and by incorporating 
knowledge about when retrievals should 
occur into routine procedures.  Habit 
captures occur when decision 
mechanisms fail to retrieve intentions or 
knowledge of unusual conditions; lacking 
the unretrieved information, decision 
mechanisms act in accordance with 



implicit default assumptions resulting in 
error. The model helps to identify 
situations in which such errors are 
especially likely.  Interface designers can 
then use this information to reduce the 
likelihood of error. 
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